skip to main content


Search for: All records

Creators/Authors contains: "Sullivan, Kendall"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Identifying rocky planets in or near the habitable zones of their stars (near-Earth analogs) is one of the key motivations of many past and present planet-search missions. The census of near-Earth analogs is important because it informs calculations of the occurrence rate of Earth-like planets, which in turn feed into calculations of the yield of future missions to directly image other Earths. Only a small number of potential near-Earth analogs have been identified, meaning that each planet should be vetted carefully and then incorporated into the occurrence rate calculation. A number of putative near-Earth analogs have been identified within binary-star systems. However, stellar multiplicity can bias measured planetary properties, meaning that apparent near-Earth analogs in close binaries may have different radii or instellations than initially measured. We simultaneously fit unresolved optical spectroscopy, optical speckle and near-IR adaptive optics contrasts, and unresolved photometry and retrieved revised stellar temperatures and radii for a sample of 11 binary Kepler targets that host at least one near-Earth-analog planet, for a total of 17 planet candidates. We found that 10 of the 17 planets in our sample had radii that fell in or above the radius gap, suggesting that they are not rocky planets. Only two planets retained super-Earth radii and stayed in the habitable zone, making them good candidates for inclusion in rocky-planet occurrence rate calculations.

     
    more » « less
  2. Abstract

    To fully leverage the statistical strength of the large number of planets found by projects such as the Kepler survey, the properties of planets and their host stars must be measured as accurately as possible. One key population for planet demographic studies is circumstellar planets in close binaries (ρ< 50 au), where the complex dynamical environment of the binary inhibits most planet formation, but some planets nonetheless survive. Accurately characterizing the stars and planets in these complex systems is a key factor in better understanding the formation and survival of planets in binaries. Toward that goal, we have developed a new Markov Chain Monte Carlo fitting algorithm to retrieve the properties of binary systems using unresolved spectra, unresolved photometry, and resolved contrasts. We have analyzed eight Kepler Objects of Interest in M-star binary systems using literature data, and have found that the temperatures of the primary stars (and presumed planet hosts) are revised upward by an average of 200 K. The planetary radii should be revised upward by an average of 20% if the primary star is the host, and 80% if the secondary star is the planet host. The average contrast between stellar components in the Kepler band is 0.75 mag, which is small enough that neither star in any of the binaries can be conclusively ruled out as a potential planet host. Our results emphasize the importance of accounting for multiplicity when measuring stellar parameters, especially in the context of exoplanet characterization.

     
    more » « less
  3. Abstract

    Binary stars are ubiquitous; the majority of solar-type stars exist in binaries. Exoplanet occurrence rate is suppressed in binaries, but some multiples do still host planets. Binaries cause observational biases in planet parameters, with undetected multiplicity causing transiting planets to appear smaller than they truly are. We have analyzed the properties of a sample of 119 planet-host binary stars from the Kepler mission to study the underlying population of planets in binaries that fall in and around the radius valley, which is a demographic feature in period–radius space that marks the transition from predominantly rocky to predominantly gaseous planets. We found no statistically significant evidence for a radius gap for our sample of 122 planets in binaries when assuming that the primary stars are the planet hosts, with a low probability (p< 0.05) of the binary planet sample radius distribution being consistent with the single-star population of small planets via an Anderson–Darling test. These results reveal demographic differences in the planet size distribution between planets in binary and single stars for the first time, showing that stellar multiplicity may fundamentally alter the planet formation process. A larger sample and further assessment of circumprimary versus circumsecondary transits is needed to either validate this nondetection or explore other scenarios, such as a radius gap with a location that is dependent on binary separation.

     
    more » « less
  4. Abstract

    Accretion is one of the defining characteristics of classical T Tauri stars, fueled by the presence of a circumstellar disk comprised of dust and gas. Accretion produces a UV and optical excess, while re-radiated emission at the inner edge of the dust component of the disk produces a near-infrared (NIR) excess. The interplay between stars and their disks helps regulate protoplanetary disk evolution and dispersal, which is key to a full understanding of planet formation. To investigate the relations between NIR excess and optical excess in both single and binary stars, we used an archival sample of spectroscopically characterized members of the Taurus star-forming region (τ∼ 1–2 Myr) with measured luminosities, spectral types, and optical veiling. We combined the archival sample with the Two Micron All Sky Survey and Wide-field Infrared Survey Explorer NIR photometry and high-resolution imaging surveys. We found that NIR and optical excesses are correlated in multiple NIR photometric bands, suggesting that they are closely related, likely because more massive disks have higher inner dust disk walls and are also associated with higher accretion rates. We also found that multiplicity has no impact on accretion or inner disk properties in a sample with a wide range of separations, but the sample was too small to specifically investigate close binaries, where the effects of multiplicity on disk properties should be most significant.

     
    more » « less